Restrictions in the use of biocides for disinfection procedures

Peter Oltmanns, PhD Susanne Hendrich, PhD


Research and Development

the plus of pure performance

Conclusion of previous presentation

- Effective biocides are still available. But how long?
- Usually, multi-resistant Gram-negative bacteria are not more resistant to disinfectants than sensitive strains
- Disinfectants that do not smell and are skin and material friendly such as QACs are sometimes not sufficient to fight pathogens
- Stronger active ingredients with a broad spectrum are also needed
- Disinfectants (biocides) play an important role in infection prevention
- There is a need for a variety of biocides now and also in future!

Key Selection Criteria for Disinfectants

Legal challenges with the development and marketing of antimicrobial products in EU (hygiene)

schülke -}

REACH

Registration, Evaluation, Authorization of Chemicals 1907/2006

all w/o medicinal products

MDD

Medical Device Directive 93/42/EC → MDR in planning

instrument disinfectants surface disinfectants

CLP

Classification, Labeling,
Packaging
1272/2008

all w/o medicinal products w/o medical devices in direct contact with human body

MPD

Medicinal Products Directive 2001/83/EC

antiseptics

hand disinfectants (medicinal,DE)

BPR

Biocidal Products Regulation 528/2012
Incl. implementing regulations

hand disinfectants surface disinfectants

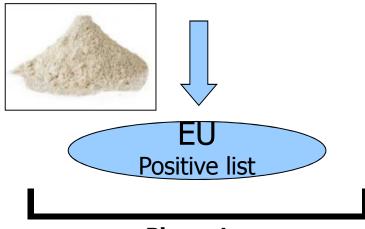
Scope of BPR and CLP

schülke -}

BPR

- improve the functioning of the internal market through the harmonisation of the rules on the making available on the market and the use of biocidal products,
- ensuring a high level of protection of both human and animal health and the environment.

CLP

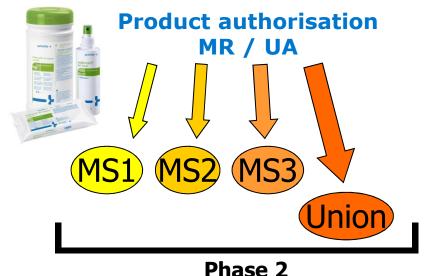

- ensure a high level of protection of human health and the environment.
- free movement of chemical substances, mixtures and certain specific articles, while enhancing competitiveness and innovation

BPR - 2 step procedure

1. Active Substances

- a) the build up of a positive list of actives, which are allowed to be used in BP
 - List of Approved Substances
 - List of approved manufacturers of active substance (Art. 95 list)
 - Harmonized classification during evaluation procedure

listing in positive list



Phase 1 for defined product types

schülke -}

2. formulated Biocidal Products

- b) the authorization and the marketing of BP in the member states
- c) the mutual recognition of the authorizations in the European Union
- d) Union-Authorisation (= central authorization) in all Member States via ECHA, granted by Commission

for defined PTs and uses

Active Substances and Biocidal Products – Costs

schülke -}

Listing of an active substance

Data: 100-3000 T€ Dossier: 50-200 T€ fee ECHA: >120 T€ fee eCA: 50-400 T€

Total 320 - 3,800 T€

Authorization of a Biocidal Product

UA data/dossier: 100-200 T€ fee ECHA: 80-150 T€ fee eCA: 10-100 T€

• MR data/dossier: 100-200 T€ fee ECHA: 700 € per MS fee eCA: 10-100T€ +

fee MR: 1-6 T€ per MS

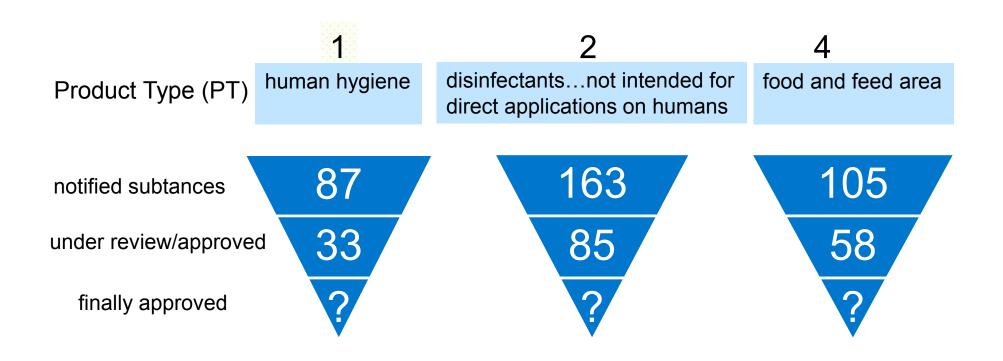
Total 200 - 500 T€

(Calculation based on 30 countries)

Annual Fees

start ~ 1000 actives

BPR: active substance approval


Identification: 759 active substances
Notification: 363 active substances

after dossier submission ~180 active substances

after evaluation in positive list: ?

PT	notified actives	submitted dossiers	%	Review-Programm	positive list
1	87	44	50	28	5
2	163	91	56	78	7
3	108	59	55	43	5
4	105	60	57	48	10
6	143	56	39	44	4
7	89	45	50	26	3
8	80	40	50	7	38
9	138	69	50	37	2
10	94	47	50	26	2
11	127	64	50	49	1
12	118	59	50	36	2
13	104	37	35	25	2
14	17	14	82	1	14
15	2	1	50	0	1
16	13	4	31	0	0
17	3	2	66	1	0
18	104	59	57	28	33
19	41	16	36	7	8
20	25	13	52	0	1
21	46	11	24	6	6

BPR: active substances PT 1 / 2 / 4

use in e.g. hand disinfectants

surface disinfectants

schülke -} **BPR step 2: Union Authorisation Biocidal Products** Dossier preparation ~ Up to 3 years 2 years COM: **Preparatory Evaluation BPC** preapplication **Implementing** submission by eCA* discussions opinion decision IUCLID 5 **SPC Editor IUCLID Supporting** dossier documents **Summary of Product** (.doc, .pdf) (.i5z format) **Characteristics (SPC)** (.xml format) *evaluating Competent Authority

timeline PT 1,2,4 substances until 2019 products 2015-2022 (?)

Candidate for substitution / comparative assessment

Substance evaluation

Candidate for substitution

Consequence for Product Formulation

Biocidal Product evaluation

Comperatative assessment for BP

Art.23: approval for max. 5 y Art.23: renewal for max. 5 y

Art. 17 approval for max. 10 y

Art.4: approval for max. 5 y Art.10: renewal for max. 7 y

approval for max. 10 y Art.12: renewal for max. 15 y

Art. 10: Substances

- fulfilling the exclusion criteria (Art. 5) → CMR
 Cat 1
- Respiratory sensitizers
- Fulfilling two of three PBT-criteria
- Significantly higher toxicity vs. other a.s.
- Reason for concern
- High amount of impurities or non active isomers

Art. 23: Criteria

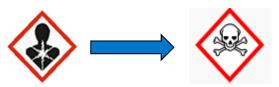
- No other authorized product for the same use with significantly lower risk
- Chemical diversity

Challenges (1)

The problem of Approval of Active Biocidal Substances

- High investment for industry only high volume substances survive
- Risk of non-approval
- Risk of candidate for substitution status critical for product authorisation
- Basic research on new molecules less attractive

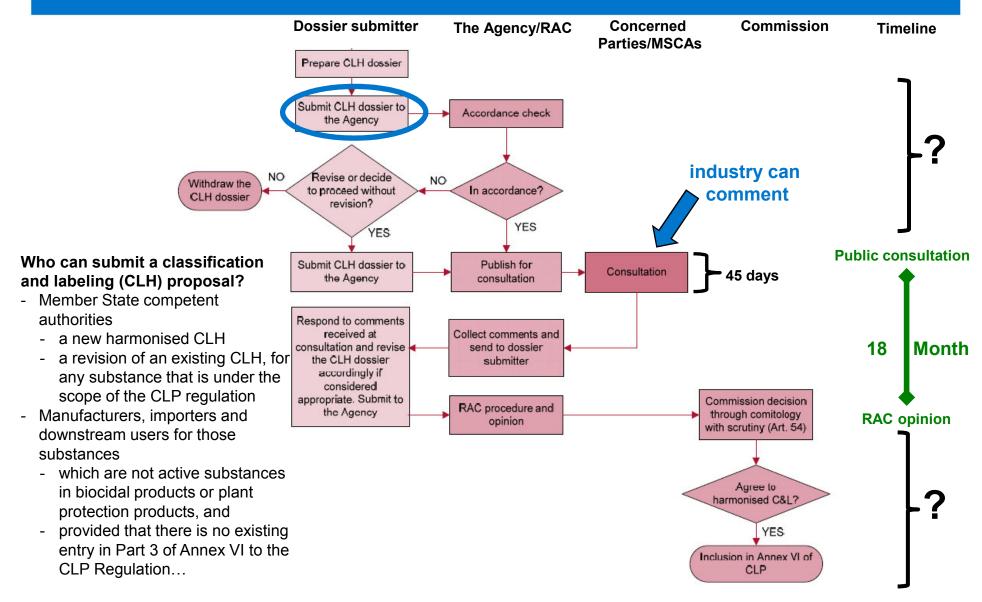
Availability?


The problem of Biocidal Product Authorization

- High investment for industry only high volume products survive
- Long-term process, complicated also for product modifications
- Risk of non-approval, risk of losing product applications

Challenges (2)

The problem of Reclassification of Active Biocidal Substances


- EU harmonised classification is part of the BPR approval process (ECHA/RAC)
- Although safe use is confirmed it may result in an "unfavorable " classification
- It normally effects "unfavorable " classification and labeling of biocidal products

User Acceptance ???

- The classification only represents the "hazard" of a substance independend from its exposure route and is <u>NOT a result of any risk assesment</u>
- Classification often has an impact on handling and storage regulations
- The classification is valid for the substance also in all REACH applications

CLH-dossier - process

It already real life!

Examples

polyhexamethylene biguanide hydrochloride (PHMB)

- BPR: Support as biocidal active → required to maintain the use as biocidal active substance
 - BPC opinion: PT 1 use refused, PT 2: approved (no official inclusion decision)
 - Candidate for substitution
- harmonized classification by Risk Assessment Committee RAC/COM (944/2013)

valid since 01.01.2015!

Pictogram, signal word			Hazard class	Hazard statement
GHS05		Danger	Eye Dam. 1	H 318
GHS07		Warning	Acute Tox 4, oral	H 302
	V			
GHS08		Danger	Skin Sens 1B	H 317
			STOT RE 1	H 372, inhal.
			Carc cat 2	H 351
GHS09	¥2>	Warning	Aquatic Acute 1	H 400
	\		Aquatic Chronic 1	H 410

- Impact
 - No use within biocidal products accepted by users, even if safe use could be shown
 - → Active substance will vanish from the biocidal market
 - No longer allowed in cosmetics, impact on medical devices

surface disinfectant label 1,2% PMBH + 18 % QAV

schülke -}

H314: Causes severe skin burns and eye damage.

H317: May cause an allergic skin reaction.

H373: May cause damage to organs through prolonged or repeated exposure.

H410: Very toxic to aquatic life with long lasting effects.

today since 01.01.2015

H314: Causes severe skin burns and eye damage.

H317: May cause an allergic skin reaction.

H351: Suspected of causing cancer.

H373: May cause damage to organs through prolonged or repeated exposure.

H410: Very toxic to aquatic life with long lasting effects.

User Acceptance ???

Glutardialdehyde (GDA)

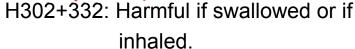
- BPR: Support as biocidal active
 - BPC opinion and inclusion decision published (deadline for product authorization: 30.9.2016)
 - · candidate for substitution
- harmonized classification by Risk Assessment Committee RAC
 - RAC opinion published, ATP is open

Pictogram, signal word			Hazard class	Hazard statement
GHS06		Danger	Acute Tox. 2, inh.	H330
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Acute Tox. 3, oral	H301
GHS05		Danger	Skin Corr. 1B	H314
	$\dot{\wedge}$		STOT SE 3	H335
GHS08		Danger	Skin Sens. 1A	H334
			Resp. Sens. 1	H317
GHS09	\\\\\ 2	Warning	Aquatic Acute 1	H400
	•		Aquatic Chronic 2	H411

expected in 2017/18

The occupational exposure limit of glutardialdeyhde is defined in Germany as 0.05 ppm

surface disinfectant label 9,8 % GDA + 18 % Quaternary ammonium compounds, benzyl-C12-16-alkyldimethyl, chlorides


schülke -}

today

·(!)

H314: Causes severe skin burns and eye damage.

H317: May cause an allergic skin reaction.

H334: May cause allergy or asthma

symptoms or breathing difficulties if inhaled.

H335: May cause respiratory irritation.

H410: Very toxic to aquatic life with long lasting effects.

future 2017/18

H302: Harmful if swallowed

H331: Toxic if inhaled.

H314: Causes severe skin burns and eye damage.

H317: May cause an allergic skin reaction.

H334: May cause allergy or asthma symptoms

or breathing difficulties if inhaled.

H335: May cause respiratory irritation.

H410: Very toxic to aquatic life with long lasting effects.

EUH071: Corrosive to the respiratory tract.

User Acceptance ???

The Ethanol Story...

Enjoy!

Ethanol

schülke -}

- BPR: Support as biocidal active by formulator task-force
 - → required to maintain the use of ethanol as biocidal active substance
- harmonized classification by Risk Assessment Committee RAC likely
 - Up to now no CLH dossiers was submitted
 - Classification as CMR is proposed within BPR procedure due to cancer studies on humans (misuse of alcoholic beverages - chronic oral consumption in amounts beyond levels normally tested)
 - Carc. 1A or 1B H350 May cause cancer
 - Muta. 1B H340 May cause genetic defects

- Repr. 1A H360FD May damage fertility or the unborn child
- Lact. H362 May cause harm to breast-fed children
- Classification valid for all uses
 - → Even if no oral use is given → classification is independent from the exposure route
 - → Even if all ethanol products were denatured and oral exposure is not possible
 - → exclusion criteria BPR → restriction of biocidal uses / no consumer use
 - → Alcoholic beverages are exempted (food)

Scenario :hand disinfectant label with 80 % Ethanol

schülke -}

today

signal word: DANGER

H225: Highly flammable liquid and vapour.

H319: Causes serious eye irritation.

future ???

signal word: DANGER

H225: Highly flammable liquid and

vapour.

H319: Causes serious eye irritation.

H340: May cause genetic defects.

H350: May cause cancer.

H360: May damage fertility or the

unborn child.

H362: May cause harm to breast-fed

children

User Acceptance = zero

Scenario: surface disinfectant label with 30 % Ethanol

schülke -}

today

signal word: WARNING

H226: Flammable liquid and vapour.

H319: Causes serious eye irritation.

User Acceptance = zero

future ???

signal word: DANGER

H226: Flammable liquid and vapour.

H319: Causes serious eye irritation.

H340: May cause genetic defects.

H350: May cause cancer.

H360FD: May damage fertility or the

unborn child.

H362: May cause harm to breast-fed

children

Impact – BPR/REACH/CLP

amount of actives decreases

- No support for political reasons
- No support due to high risk potential
 → more severe labeling
- No support due to economic reasons
- Support but exclusion due to risk potential
- Candidates for Substitution

application

- limitation to certain applications
- less new developments
- · less variation in products
- no solutions for niche applications

costs

- · increasing prices due to
 - fees
 - study costs
 - dossier costs

Discussion

- A variety of Biocidal Products (disinfectants) are more than ever essential for infection prevention protection of human health
- But: applying biocidal products means a potential risk for the environment
- Ethical scope of regulations (REACH/BPR/CLP/others)
 high level of protection of both human and animal health and the environment
- Risk / Benefit evaluation is missing
- No (clear) differentiation between consumer and professional use
- Risk assessments are performed on the basis of worst case scenarios
- Hazard labeling and classification leads to minor user acceptance
- A risky investment for industry in not the biggest markets
- How to assure the availability of biocides in future ?